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Abstract: The high incidence of fungal infections has become a worrisome public health issue,
having been aggravated by an increase in host predisposition factors. Despite all the drugs available
on the market to treat these diseases, their efficiency is questionable, and their side effects cannot
be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative
carriers for these medicines not only to fight emerging fungal infections but also to avert the increase
in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug
delivery systems and even new cellular targets and compounds with antifungal potential are now
being investigated. This article will provide a summary of the state-of-the-art strategies that have
been studied in order to improve antifungal therapy and reduce adverse effects of conventional
drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained.
Furthermore, the article will focus on new compounds from the marine environment which have a
proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting
the challenges of the translation of these natural compounds into the clinical pipeline.
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1. Introduction

There is a wide range of fungal infections, from superficial, affecting skin, to systemic infections
with invasion of internal organs [1]. Fungal infections affect millions of people every year worldwide.
Of these, more or less 1.5 million are invasive fungal infections therefore requiring advanced treatment
and hospitalization. Most of these disseminated infections are caused by Candida, Cryptococcus,
Aspergillus, and Pneumocystis species, being the cause of cryptococcosis, candidiasis, aspergillosis,
and pneumocystis pneumonia, respectively [2].

Superficial fungal infections are rather common and, despite rarely being life threatening, they can
spread to other skin regions and even become widespread. Furthermore, they can be transmitted to
other people and may cause secondary bacterial skin infections, harming the quality of a person’s
life. Skin mycoses are classified according to the causative fungal agents into dermatophytosis,
yeast infections, and mold infections [1].

Invasive fungal infections represent a significant burden to healthcare systems, having high
morbidity and mortality rates. These rates are most worrisome among immunocompromised patients
that are more prone to opportunistic infections, such as patients with Acquired Immune Deficiency
Syndrome (AIDS), transplant patients whose immune systems are suppressed to prevent organ
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rejection, patients with cancer who are taking immunosuppressive chemotherapy or autoimmune
patients undergoing immunosuppressive therapy [2,3].

The currently major available agents to treat invasive fungal infections can be grouped into four
main classes according to their mechanism of action: polyenes, azoles, allylamines, and echinocandins
(Table 1) [4]. They all present drawbacks when it comes to spectrum of activity, drug–drug interactions,
pharmacokinetics and pharmacodynamics, resistance mechanisms, and the toxicity of the compounds
themselves. Furthermore, there are some limitations in terms of clinical efficacy and efficiency,
mainly because of their physical-chemical properties, like their hydrophobic character that leads to a
low solubility in water and also selectivity problems deriving from the similarities between fungi and
human cells [3,5].

Table 1. Targets of each group of antifungals [6,7].

Class Target (Mechanism of Action) Antifungal

Azoles
Ergosterol (inhibition of lanosterol

14-α-demethylase)

Imidazoles

Miconazole

Econazole

Ketoconazole

Clotrimazole

Triazoles

Itraconazole

Fluconazole

Voriconazole

Allylamines Ergosterol (inhibition of
squalene epoxidase)

Terbinafine

Naftifine

Butenafine

Polyenes
Cell membrane (production of ROS) Amphotericin B

Ergosterol (inhibition of lanosterol
14-α-demethylase) Nystatin

Echinocandines Cell wall (block of β-1,3 glucan synthesis) Caspofungin, Micafungin,
Anidulafungin

Other antifungals

Chelation of polyvalent metal cations Ciclopirox

Microtubules (prevention of the formation
of the mitotic spindle) Griseofulvin

Ergosterol (inhibition of D14 reductase and
D7-D8 isomerase) Amorolfine

Nevertheless, the design and development of new drug delivery systems or even new antifungals
is an emerging need, owing to the following facts [8]:

• There are 20–40% mortality rates with invasive mycoses, therefore these figures need to
be improved;

• The increase in patients undergoing prolonged antifungal therapies reflects the need to develop
better fungicidal drugs and thus reduce the length of the treatments and the costs associated;

• There is still space for improvement in pharmacokinetics and pharmacodynamics, in order to
reduce the frequency of drug use;

• More attention needs to be given to the host toxicities and drug–drug interactions of current
therapy so that their effects can be eliminated or, at least, minimized;

• New therapy groups with different mechanisms of action are needed; this way, these new drugs
may synergize with present ones and allow better responses;

• There is an alarming growth in antifungal resistance in all therapeutic groups [8].
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Nanotechnology is an emerging field of science that has shown an undeniable versatility and has
boosted a revolution when it comes to medical treatments, quicker diagnosis, cellular regeneration,
and drug delivery [9,10]. The material to produce nanoparticles can be divided into three main groups:
polymers, lipids, or metals, each one giving rise to a different type of nanoparticle [11]. The main
representatives of each of these three different groups of nanoparticles are mentioned in Figure 1 below.

Figure 1. The new drug delivery systems based on nanotechnology that are currently being employed
in order to enhance drug delivery, promote a better targeting, and reduce the toxicity of conventional
antifungal drugs. It is also important to point out the importance of the production of nanoparticles by
fungi (biological synthesis) and the undeniable potential of the sea as a source of new molecules with
antifungal activity.

Nanoparticles have been employed in pharmaceutical formulations because of their ability to
alter and improve the pharmacokinetic and pharmacodynamic properties of the drugs. This is given
to their capability to increase the solubility and stability of the drugs, to allow a controlled release
and to exhibit biocompatibility with tissues and cells, which is reflected in an overall improvement
on therapeutic efficiency [11,12]. In addition, its subcellular size is compatible with an intravascular
injection and its high surface area is amenable to modification so that the drug is released in a
specific target, thus reducing the systemic adverse effects and increasing the therapeutic compliance,
by decreasing the usual dose and the frequency of administration [13,14]. This targeted-specific
action is possible since, at a nanomolecular level, it is possible to incorporate target ligands that
allow a preferential binding of certain types of cells, by conjugation with antibodies and peptides on
the surface of the transporters [15–17]. Hence, the development of new biopharmaceutical systems,
especially nanoparticulate carriers, is a good strategy to improve the therapeutic efficacy, safety,
and compliance of conventional antifungal drugs.

In Table 2 an overview of the new antifungal drug delivery systems is presented, and the drug
chemical group, their route of administration, and their dosage form provided.
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Table 2. Some of the novel drug delivery systems already developed for each antifungal drug.

Antifungal Drugs Novel Drug
Delivery Systems

Routes of
Administration Dosage Forms References

Miconazole

Niosomes Transdermal Gel [18]

SLN
Oral N.A. [19]

Topical Gel [20]

Microemulsion Topical N.A. [21]

Liposomes Topical Gel [22]

Nanoemulsion Topical N.A. [23]

Nanosponges Vaginal Gel [24]

Transfersomes Topical Gel [25]

Econazole

Microemulsion
Percutaneous N.A. [26]

Topical Gel [27]

SLN Topical Gel [28]

NLC Topical Gel [29]

Liposomes Topical Gel [30]

Ethosomes Topical Gel [31]

Transethosomes Transdermal Gel [32]

Nanosponges Topical Hydrogel [33]

Niosomes Transdermal Gel [34]

Polymeric micelles Topical N.A. [35]

Nanoemulsion Topical N.A. [36]

Ketoconazole

SLN/NLC Topical Gel [37]

Niosomes Topical Gel [38]

Microemulsion Oral N.A. [39]

Spanlastics Ocular N.A. [40]

Dendrimers Topical Hydrogel [41]

Liposomes Topical N.A. [42]

Clotrimazole

Liposomes Topical Gel [43]

Nanosponges Topical Hydrogel [44]

Ethosomes Topical Gel [45]

Niosomes Topical Gel [46]

Polymeric emulgel Topical Gel [47]

Polymeric micelles Topical N.A. [35]

SLN/NLC Topical N.A. [48]

Microemulsion
Buccal Gel [49]

Vaginal Gel [50]

Transfersomes Transdermal/Topical N.A. [51]

Itraconazole

Transfersomes Transdermal N.A. [52]

SLN Ocular N.A. [53]

NLC Inhalation N.A. [54]

Niosomes Topical N.A. [55]
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Table 2. Cont.

Antifungal Drugs Novel Drug
Delivery Systems

Routes of
Administration Dosage Forms References

Microemulsion Transdermal N.A. [56]

Liposomes Topical N.A. [57]

Polymeric
nanoparticles Oral N.A. [58]

Polymersome Intravenous N.A. [54]

Spanlastics Ocular N.A. [59]

Silica nanoparticles Oral N.A. [60]

Fluconazole

Microemulsion Vaginal Gel [61]

Niosomes Ocular Gel [62]

Liposomes Intravitral N.A. [63]

SLN Topical Gel [64]

NLC Oral N.A. [65]

Microsponges Topical Gel [66]

Ethosomes Topical Gel [67]

Spanlastics Ocular N.A. [68]

Polymeric
amphiphilogel Topical Gel [69]

Polymeric micelles Topical N.A. [35]

Voriconazole

Microemulsion Ocular N.A. [70]

Polymeric
nanoparticles

Ocular N.A. [71]

Pulmonar N.A. [72]

SLN Topical Gel [73]

Transethosome Topical N.A. [74]

Ethosome Topical N.A. [75]

Terbinafine

Liposomes Topical Gel [76]

SLN Topical N.A. [77]

Transfersomes Topical N.A. [78]

Spanlastics Transungual N.A. [79]

Polymeric chitosan
nanoparticles Topical Hydrogel [80]

Naftifine
Microemulsion Topical N.A. [81]

Niosomes Topical Gel [82]

Butenafine Microemulsion Topical Hydrogel [83]

Amphotericin B

Liposomes Intravenous N.A. [84]

SLN/NLC
Oral N.A. [85]

Topical N.A. [86]

Magnetic
nanoparticles Nasal instilation N.A. [87]

Nanoemulsion Topical N.A. [88]

Polymeric
nanoparticles

Intravenous N.A. [89]

Oral N.A. [90]
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Table 2. Cont.

Antifungal Drugs Novel Drug
Delivery Systems

Routes of
Administration Dosage Forms References

Polymersomes Oral N.A. [91,92]

Transfersomes Topical N.A. [93]

Micelles Intravenous N.A. [94]

Silica nanoparticles Intravenous N.A. [95]

Nystatin

SLN Topical N.A. [96]

Nanoemulsion Topical N.A. [97]

Liposomes Intravenous N.A. [98]

Niosomes Parenteral N.A. [99]

Griseofulvin Niosomes Oral N.A. [100]

Ciclopirox Niosomes Topical Gel [101]

Caspofungin, Micafungin,
Anidulafungin, Amorolfine No nano-tech studies yet released

N.A.: the dosage form is not mentioned in the reference cited; SLN: Solid Lipid Nanoparticles; NLC: Nanostructured
Lipid Carriers.

However, the efficacy and human safety of these new therapies remain uncertain in most of the
articles found in literature. They generally lack controlled clinical trials and sometimes the suggested
routes of administration are less practical, or the production cost may hinder the replacement of
the conventional treatment. Nevertheless, in other cases, the opposite is verified, and some options
have potential to become a viable first line treatment [102]. Moreover, given the widespread use of
antifungal agents and the limited therapeutic offer, fungi have developed resistance mechanisms,
like overexpression of efflux pump proteins and formation of biofilms. These mechanisms can mean
not only a decrease in a drug’s effective concentration, but also changes and subexpression of drug
targets and metabolic bypass [6]. It is important to add that resistance is a cross-cutting issue to all of
the currently available classes of antifungal agents, therefore overcoming antifungal resistance can be
considered as the mainstay for improving therapeutic strategies to treat antifungal infections [2,103].

Despite the uprising of these issues in antifungal therapy, there are several mechanisms by which
nanoparticles overcome the development of resistance mechanisms:

• The chemical features and simultaneous multiple mechanisms used by nitric oxide, chitosan,
and metallic nanoparticles make the likelihood of resistance development unviable (for example,
through the direct reaction of reactive nitrogen oxide intermediates with DNA structure) [104,105];

• The resistance mechanisms can be prevented by packaging multiple antimicrobial drugs within
the same nanoparticle, because the likelihood of multiple simultaneous gene mutations in the
same cell is low. The most striking examples are the encapsulation of antifungal drugs in chitosan
or silver nanoparticles, combining the antifungal properties of both and decreasing the possibility
of drug resistance [104,106];

• Some nanoparticles, such as liposomes and dendrimers, are able to overcome the resistance
mechanisms of decreased uptake and increased efflux of drug from the microbial cell. Liposomes
are able to quickly fuse with the plasma membrane of the microbial cell and release a high
concentration of drug into its plasma membrane or cytoplasm, thereby circumventing the
decreased uptake mechanism of resistance. This means a faster delivery and avoidance of
the transmembrane pumps that catalyze increased efflux of drugs. Dendrimers, on the other
hand, are extensively branched molecules, whose surface can be filled with positively charged
quaternary ammonium compounds, which bind to negatively charged microbial cell envelopes
and increase membrane permeability. This allows the entrance of more dendrimers to the
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microbial cell, the flow of its cytoplasmic contents to the exterior, and the ultimate destruction
of the microbial cell membrane. This goes to show that dendrimers are also able to surpass the
resistance mechanism of decreased uptake of drug [107]. Other nanoparticles, specifically nitric
oxide nanoparticles made of silica and zinc oxide nanoparticles are able to overcome biofilm
formation by killing the microbes present in already formed biofilms or by inhibiting biofilm
formation through the generation of reactive oxygen species, respectively [108,109];

• Nanoparticles have been used to target antifungal drugs to the specific site of infection, allowing the
local release of high concentrations of drug, while keeping the total dose of drug administered low.
This high local dose is able to destroy the infecting fungi before they can develop resistance, thereby
overcoming this worrisome issue and translating into fewer side effects upon the patient [104].

That being said, it is also important that the research done, not only focuses on formulating these
systems, but also in overcoming the major challenges that their placing on the market faces: the physical
instability of nanoparticles, their small capacity of drug loading, the cytotoxicity/immunogenicity,
and the high cost of production and standardization, given the complexity of the formulations. Besides
that, there is almost a complete lack of studies in vivo as reaching the therapeutic range needed to
perform these studies has proven to be an arduous job. That lies in the fact that, in many cases,
there is an anticipated release of the drug, aggregation and precipitation of the nanoparticles, and the
accumulation in non-target tissues.

2. Nanotechnology and Mycology

Mycology and Nanotechnology have created a bidirectional relationship throughout the years.
This dynamic interface between mycology and nanotechnology led to the creation of the term
“myconanotechnology” (Figure 2) [110]. Nanotechnology has proven to be an interesting strategy to
increase the potency and efficiency of conventional antifungals, to enable a decrease in toxicity and cost,
to avoid an anticipated degradation, to ameliorate the drug distribution, by increasing the circulation
time and improving pharmacokinetics, and also to improve drug targeting, with promising in vitro
and in vivo results [5]. Furthermore, many metallic nanoparticles have been used against human and
plant pathogenic fungi in the light of their intrinsic antifungal activity and a wide spectrum of fungi
are able to biosynthesize nanoelemental particles [110].

Figure 2. Bidirectional relationship of Nanoparticles and Mycology: nanotechnology has proven to be
useful in improving antifungals pharmacokinetics and pharmacodynamics and many fungi have been
used to biologically synthetize nanoparticles.
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2.1. Antifungal Potential of Nanoparticles

Metallic nanoparticles have been used to eliminate fungi that are pathogenic to Man and to
plants, because of their intrinsic antimicrobial activity [110]. The exact mechanisms this activity occurs
through are only hypothesized and can be explained through three main pathways: (1) direct uptake
of nanoparticles, (2) indirect activity of nanoparticles by production of reactive oxygen species (ROS),
(3) impairment of cell wall/membrane through accumulation [111]. It is highly probable that it is the
combination of these multiple pathways that is responsible for antimicrobial activity [112].

Nanoparticles undergo dissolution processes thanks to their electrochemical potential [113].
This leads to their separation into ions within the microbial fluid or in the culture medium. These ions
also accumulate in the interior or exterior causing an inhibitory answer against microtubules.
The accumulation of nanoparticles outside the microtubules causes the formation of layers that
block cellular respiratory chain and destroy the microtubules [111].

The electrical charge of the nanoparticle is vital for the interaction that occurs between it and
the carried drug. The electrostatic mechanism justifies why the antimicrobial activity was firstly
described in silver nanoparticles. It is widely accepted that the positive charge of the silver ion is
crucial for the antimicrobial activity of these nanoparticles through electrostatic attraction between the
negatively charged cellular membrane of microorganisms and the positively charged membrane of
nanoparticles [111]. Ag+ has high affinity to thiol groups in cysteine of respiratory chain enzymes,
therefore it uncouples the synthesis of adenosine triphosphate (ATP). Ag+ also binds to proteins of
transport from the respiratory chain, causing the leak out of protons and thus the collapse of the proton
motive force. Furthermore, Ag+ obstructs the uptake of phosphate and so promotes the efflux of
intracellular phosphate [113].

Silver nanoparticles exhibit potent antifungal activity against clinical isolates and ATCC strains
of Trichophyton mentagrophytes with concentrations of 1–7 µg/mL and a MIC (minimum inhibitory
concentration) of 25 µg/mL against Candida albicans [114]. Silver nanoparticles also reveal good
antifungal activity against Aspergillus niger, by inhibiting spore germination and preventing biofilm
formation; when combined with simvastatin, there is an additive and synergistic effect that increases
the antifungal effect, perhaps because simvastatin, as an ergosterol synthesis inhibitor (see Table 1),
disrupts fungal cell membrane, which allows the entry of the nanoparticles [115].

Metals present in nanoparticles can act as catalysts, reacting with biomolecules thanks to their
high specific surface area, inducing the direct production of free radicals when exposed to the acidic
environment of lysosomes or interacting with oxidative organelles [112,113].

ROS, like superoxide anions, hydroxyl radicals, and hydrogen peroxide, are oxygen-derived
by-products formed when a material is exposed to an oxygenated environment, allowing their
interaction with biomolecules. This way, they can cause an imbalance between the production of
reactive species and the capacity of the biological system to detoxify reactive intermediates or repair
damage [111]. Although the antioxidant cell defense prevents the effects of ROS to some extent,
excessive ROS production may cause oxidative stress and lipid peroxidation, leading to membrane
impairment, mitochondrial dysfunction, and DNA damage. That being a toxic mechanism to human
cells, cytotoxicity tests should be performed on nanoparticles that owe their antimicrobial effects to
ROS production, therefore avoiding interactions and toxic reactions in human beings [111].

Chitosan and its chemical derivates have been used as building blocks for drug delivery
nanoformulations in light of their biocompatibility, biodegradability, and mucoadhesivity, presenting
some advantages such as in situ gelling performance, mucoadhesive properties, and ability to prolong
the release of low-molecular-weight compounds to macromolecular drugs [116]. Chitosan nanoparticles
have proven to exhibit great antimicrobial activity against Candida infections [1]. According to the
literature and research already undertaken, this antimicrobial activity is attributed to positively charged
amino groups that react with negatively charged groups of lipopolysaccharides and proteins on
the surface of the microbial cells, resulting in disintegration of the cell membrane. By doing this,
the nanoparticles are able to bind with DNA molecules and inhibit mRNA and protein synthesis.
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In the specific case of fungi, chitosan acts by inhibiting the sporulation and germination of spores,
by interfering with the activity of the growth-promoting enzymes [1,117].

Zinc oxide nanoparticles (ZnONPs) have also proved antifungal activity against dermatophyte
infections and other pathogenic fungi, such as Candida and Aspergillus [1]. Meanwhile, the synergistic
antifungal activity of ZnONPs was evaluated along with common antifungal drugs, which revealed
that their inhibitory efficiency can be increased in combination with ZnONPs, which could possibly
reduce the overuse of these drugs, decrease their toxicity, and increase their antifungal activity [118].
In addition, these nanoparticles might be an interesting and promising alternative to conventional
preservatives in cosmetics in the future [119].

In addition to these nanoparticles mentioned above, dendrimers also exhibit antifungal activity
and provide the opportunity for complex therapy in which dendrimers are both the drug carrier and
the adjunctive component of the dosage form [41].

2.2. Synthesis of Nanoparticles by Fungi

Thanks to their tolerance and ability to bioaccumulate metals, fungi now occupy a central role
in the biological production of metallic nanoparticles (Table 3) [10]. They can not only be used
to produce the nanomaterials that will make up the nanosystem coating, but also be, themselves,
carried by the nanosystem. This way, new ecological processes are developed, which imply a
reduced waste of solvents and chemical substances. The biosynthesis methods are simpler and
allow size and shape control of nanoparticles. Besides fungi, other organisms are used to synthesize
nanoparticles, for instance, bacteria, plants, or plant extracts [110]. Compared to bacteria, fungi produce
higher quantity of enzymes, which is translated into a higher yield in the nanoparticles production.
Furthermore, their growth, both in laboratory and at an industrial scale, is easier to control [110].

Table 3. Some examples of metallic nanoparticles produced by fungi and their method of synthesis [10,120].

Fungal Species Nanoparticles Type Method of Synthesis

Phoma sp. Silver Extracellular
Fusarium oxysporum Gold; Magnetite Extracellular

Verticillium sp. Silver Intracellular
Aspergillus fumigatus Silver Extracellular

Aspergillus niger Silver Extracellular
Fusarium semitectum Silver Extracellular

Trichoderma asperellum Silver Extracellular
Phaenerochaete chrysosporium Silver Extracellular

The biological synthesis can either be intracellular or extracellular according to the nanoparticles’
locations. In intracellular synthesis, the ions are transported to the inner part of microbial cells to form
nanoparticles in the presence of an enzyme. The nanoparticles formed inside the organism are of
shorter size, when compared to the extracellular ones, because there is nucleation of particles inside
the organisms. Extracellular synthesis has more applications than intracellular, as there is no need to
join cellular components from the cell. The majority of the fungi produce nanoparticles extracellularly
as a result of their secretory components that participate in nanoparticles reduction and capping [10].

Both yeasts and filamentous fungi can be used to synthetize nanoparticles. The process of
synthetizing filamentous fungi-mediated nanoparticles is easy and cost-effective, since the mycelia in
the biomass has high surface area and high intracellular metal absorption. Moreover, the fungi cell
wall has many functional groups that facilitate the absorption to the metals [110].

Silver nanoparticles are the most fundamental among metallic nanoparticles that are involved
in biomedical applications, specially cancer diagnosis and antimicrobial therapy [114]. One of the
most remarkable examples is the extracellular synthesis of silver nanoparticles from filamentous fungi,
like Fusarium solani, a pathogenic fungus isolated from infected onions. Ingle et al. [121] believe that,
in these cases, the fungus does the “phagocytosis” of the nanoparticles, depositing them in their
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cellular wall, by binding to their functional groups. Afterwards, the fungus carries the nanoparticles
and excretes them through exocytosis. The silver nanoparticles obtained were quite stable in solution
because fungus-secreted proteins capped the nanoparticles. The authors argued that the procedure
with this fungus could work for other metal nanomaterials such as gold and platinum with countless
applications in the medical field [121].

Afterwards, many other scientists were able to optimize the biological production of
silver nanoparticles using other fungi, such as Fusarium oxysporum [122], Cochliobolus lunatus,
Beauveria bassiana [123], Bipolaris maydis [124], and many others. It was also concluded that some of these
biologically synthesized silver nanoparticles showed enhanced antifungal activity with fluconazole
against Phoma glomerata, Phoma herbarum, Fusarium semitectum, Trichoderma sp., Phoma glomerata,
Phoma herbarum, and Candida albicans [114]. Surprisingly, it was additionally observed that the potential
of silver nanoparticles is much wider than the inhibition of human and plant pathogenic fungi,
as they also inhibit indoor fungal species such as Penicillium brevicompactum, Aspergillus fumigatus,
Cladosporium cladosporoides, Chaetomium globosum, and Stachybotrys chartarum [125].

Likewise, yeasts can be useful for nanoparticle synthesis, as they produce enzymes responsible
for the reduction of metallic salts and their conversion into elementary nanoparticles. Some examples
are the biosynthesis of cadmium nanoparticles by Candida glabrata and Schizosaccharomyces pombe [110]
and of selenium and silver nanocompounds by Saccharomyces cerevisiae in aerobic conditions [126,127].

2.3. Antifungal Drug Administration

The administration of antifungal drugs is not restricted to oral or parenteral routes. Other routes
such as transungual, pulmonary, and ocular have also acquired great importance in the treatment
of certain fungal infections. The development of a drug delivery system for attaining therapeutic
concentration at these target organs is a challenge that requires a comprehensive understanding of the
dynamics and specific features of the nails, lungs, and eyes, respectively.

2.3.1. The Transungual Route

This special topical route acquires singular importance in antifungal therapy, mainly when
onychomycosis (Tinea ungium) caused by dermatophytes (such as Trichophyton rubrum) or yeasts are
concerned [128]. These infections affect the nail plate and/or the nail bed and are very frequent [129].

Drug delivery through nails has its own challenges and the use of nail penetration enhancers is
compulsory in formulations. The nail plate is composed by cross linked keratin linkages, an extensive
bonding network responsible for its rigidity. Although there has been considerable research regarding
new approaches for transungual drug delivery, topical permeability was limited by its barrier
properties. Therefore, the lookout for novel approaches is important to enhance treatment efficacy
and reduce treatment time and relapse rate [128]. There are still no nanotech solutions for this
purpose, but medicated nail lacquers loaded with ciclopirox or amorolfine are the most feasible delivery
vehicles [130]. The main hurdle in the development of nail lacquers for nail disorders is delivering the
therapeutically effective concentrations to the site of infection, which is often under the nail [129].

2.3.2. Pulmonary Delivery

Drug delivery to the lungs is challenging because the availability of therapeutic quantities of
antifungal drug at the site of infection is often inadequate on account of high blood flow turnover in
the tissue. This can be problematic since a local and prolonged drug release is desirable when targeting
this organ.

Developing a nanoparticle-based system and delivering it to the lungs in case of a pulmonary
infection may help retain the antifungal in lungs over a prolonged period and may reduce the toxicity
compared to the parenteral route [72,131].

A study in which voriconazole was encapsulated within a PLGA nanoparticle revealed that this
is a better option to deliver the drug in deep lung tissue at a high concentration for a prolonged
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period of time and assumedly to provide greater antifungal effect in fungal infections. This was
concluded because these nanoparticles were retained for a prolonged time in lungs and showed higher
biodistribution when compared to voriconazole alone [72].

2.3.3. The Ocular Route

The eye is a particularly puzzling organ for drug delivery systems. Physical barriers that hinder
drug access into the eye limit the drug bioavailability. In addition, physiological processes like blinking
and tear drainage reduce the residence time of ocular drug delivery systems and drastically reduce the
amount of trans-corneal drug absorption [131,132].

Fungal ocular infections are much less prevalent when compared to bacteria or virus. However,
fungal keratitis is considered the second cause of blindness in developing countries and is an important
cause of morbidity [133,134]. People with prolonged use of corticosteroids or antibiotics, with diabetes
mellitus, with corneal trauma or surgery, and even people wearing contact lenses are at a higher risk of
having fungal keratitis [134].

New formulations such as polymer-based nanoparticles, liposomes, dendrimers, SLNs, spanlastics,
and niosomes were developed to enhance drug bioavailability to the eye and to minimize antifungal
adverse effects [135]. They also have the ability to overcome the disadvantages of conventional eye
drops, like short residence time, by prolonging the contact time at the corneal surface and achieving a
sustained release of the drug. In addition, the encapsulation into these systems protects antifungals
from degradation promoted by the metabolic enzymes on conjunctival and corneal surfaces and in tear
fluids [134].

A study assessed the efficacy of a fluconazole liposomal formulation for candidal keratitis that
aimed at prolonging the antifungal action by increasing the contact time. The authors reported 86.4%
healing observed in rabbits treated with fluconazole encapsulated liposomes, presumably because of
higher viscosity and lipid solubility of fluconazole-loaded liposomes [136].

Furthermore, a fluconazole-loaded niosomal gel can also be successfully used as a topical drug
delivery system for corneal fungal infections. Ethosomes are known to improve both transcorneal
permeability and ocular bioavailability of poorly water-soluble drugs, which is a tremendous
improvement in topical ocular drug delivery [137].

Spanlastics also enhance permeability and bioavailability of antifungal drugs and their nano-size
makes them able to reach the posterior segment of the eye, when eye drops are used [138]. For instance,
an itraconazole-loaded spanlastic proved to be safe and non-irritant to the eyes; moreover, the elasticity
of these vesicles serves as a drug deliver for both anterior and posterior eye diseases [59].

2.4. An Overview of Nanoparticle Types and Their Applicability on Antifungal Therapy

2.4.1. Lipid Nanoparticles

Albeit the safety and tolerability of systemic antifungal therapy has improved considerably, a rising
proportion of immunocompromised patients are receiving systemic antifungal agents for progressively
longer treatment courses and that increases the probability of longer-term risks, drug interaction,
and other toxicity-related reactions in different organs [139].

Ambisome® was the first successful example of a nanotech antifungal drug and it was
manufactured by the Nexatar Company USA in 1990 [84,140]. In this formulation, amphotericin B
was incorporated in an unilamellar liposomal bilayer of approximately 45–80 nm. Compared to the
conventional formulation, this one showed less toxicity and prolonged circulation time, which suggests
a higher distribution rate [84]. Even though Ambisome® circumvented the initial toxicity issues,
its daily-basis usage is still limited by its cost [5]. Thus, nanosomal formulations of amphotericin B were
latter developed, with a special focus on lipid nanoparticles for intravenous delivery, which showed
lower cytotoxicity against human kidney cells and much less hematotoxicity compared to the ones
already marketed [141].
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Besides amphotericin B, some other drugs have also been incorporated into liposomes with
promising results. One good example of that is nystatin, a drug used mainly topically because
of its poor oral bioavailability, thus excluded for the treatment of systemic fungal infections [134].
A daily injection of liposomal nystatin, however, showed great efficacy in the treatment of invasive
aspergillosis, although with some mild renal toxicity and some infusion-related events [98]. Additionally,
a multilamellar liposome gel system containing clotrimazole revealed to be useful in the treatment of
vaginal candidiasis, providing a sustained release in the vaginal fluid and a reduced dosing interval [43].

Econazole is a topical antifungal that may be an irritant to the skin when conventional vehicles
are employed. Applying a liposomal formulation has revealed to be a good strategy to minimize
the irritating potential and to increase the compliance. Bioavailability studies of the liposomal gel
revealed a seven-fold increase in the drug concentration in the epidermis, when compared to a control.
Thus, the authors proved that it is possible to reduce the amount of drug applied and keep the
therapeutic efficacy, minimizing the cutaneous irritation [142].

Transfersomes are generally regarded as an upgrade of liposomes, because they overcome their
poor penetration through the stratum corneum, by modifications in the bilayer composition [134].
They are elastic nanovesicles made up from phospholipids and edge activators, most often surfactants
or hydrophilic detergents with high mobility.

These particles are essentially studied as carriers for dermal and transdermal delivery, but have
also shown to be effective carriers for genetic material and vaccines [143]. Ultradeformable liposomes
or transfersomes were tested in a topical delivery system for amphotericin B and were found to enhance
the drug penetration towards deep skin layers in a scale 40 times higher than Ambisome®, making this
system clinically significant [93].

Ethosomes are essentially a type of transfersome that employs ethanol instead of the edge activator
molecules; the main difference lies in the fact that ethanol evaporates once applied on the skin,
whereas the edge activator molecules remain on the skin surface after water evaporation from the
formulations [144].

Ethanol also plays an essential role in enhancing the delivery of both hydrophilic and lipophilic
drugs without impairing their deformability and elastic characteristics, which was a significant
disadvantage of transfersomes [143]. Henceforth ethosomes show great potential as topical delivery
systems for antifungal drugs [134].

The formulation of an ethosomal gel containing econazole nitrate pointed out the outstanding
potential of this system to function as a topical delivery system, since it allowed controlled drug release,
increased antifungal activity, and good stability after storage [31].

Fluconazole is used both for local and systemic fungal infections. Despite its worldwide usage,
it shows low penetration rate because of its high solubility and low permeability. The preparation of
an ethosomal gel for topical delivery of fluconazole has proved to be an efficient way to overcome
the issues associated with bioavailability, degradation, stability, and side effects of this therapeutic
agent [67].

Although the great potential of ethosomes, when the concentration of ethanol used is above
30–40% w/w, the vesicular membrane tends to become more permeable and leaky, leaking out the
entrapped drug, specially hydrophilic/ionized drugs [45,145]. Furthermore, this high ethanolic content
may affect the skin causing irritation or contact dermatitis. To solve that, Cavamax W7, a permeation
enhancer, was developed so as to improve topical delivery and to reduce the amount of ethanol used
therefore reducing the risk of adverse effects [45]. The Cavamax W7 ethosomes were able to reach the
last layer of epidermis (stratum basale) which turned them into a very valuable tool in the treatment of
deep-seated fungal infections [134]. A clotrimazole encapsulated Cavamax W7 composite ethosome
gel presented a more stable and more efficient vesicular system than the conventional ethosomal
formulation along with a better antifungal activity against Candida albicans and Aspergillus niger [45].

Transethosomes are lipid vesicles with irregular shapes that represent a combination of the
concepts applied to transfersomes and ethosomes, having a high content of ethanol (up to 30%) along
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with an edge activator molecule. This combination causes a rearrangement in the lipid bilayer of
transethosomes, allowing them to have both higher deformability and skin permeation/penetration
than the other deformable molecules. The formulation of these vesicles also presents the advantage of
being quite easy to scale up, which constitutes an enormous advantage for industrial purposes [144].
Contrary to other deformable vesicles, transethosomes improve skin delivery of drugs both under
occlusive and non-occlusive condition [146]. For these reasons, they are considered the most promising
lipid nanoparticles in antifungal therapy.

An econazole nitrate loaded transethosome gel for transdermal delivery has been developed.
Comparing it with the marketed cream of econazole nitrate, the authors found out that the former
presented less ex vivo penetration, higher ex vivo skin retention, and higher in vitro antifungal
activity [32]. Transethosomes containing terbinafine, amphotericin B, ketoconazole also disclosed
enhanced permeation [146]. In addition, voriconazole transethosomes significantly enhanced skin
permeation and deposition of the drug when compared to conventional liposomes, transfersomes,
and ethosomes [74].

Regardless of the fact that transethosomes represent the state-of-the-art in ultradeformable vesicles,
they still have some drawbacks that are important to mention such as the solubility that the drugs need
to fulfil in both lipophilic and aqueous environment so that they can reach the dermal microcirculation
and access the systemic circulation. In addition, the molecular size of the drug needs to be reasonable
to make the percutaneous absorption possible (40–200 nm) [146].

Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) have become very
attractive options to the development of drugs for cutaneous application and as an alternative to
overcome the drawbacks of liposomes. They provide an occlusive effect by virtue of their ability to
form a surface film that reduces the transepidermal water loss, which can reduce the atopic eczema
symptoms and improve the skin appearance [147]. Besides that, they exhibit an excellent tolerability
profile and its reduced size promotes a closer contact with the stratum corneum, intensifying the skin
penetration of drugs. These particles are also able to increase the chemical stability of compounds
sensitive to light, oxidation, and hydrolysis [148].

One application of SLN and NLC is the incorporation of azoles to treat cutaneous fungal
infections. The most common azoles (clotrimazole, miconazole, econazole) are extremely water
insoluble, being very difficult to administrate and to release those drugs in infection sites. However,
compounds with lipophilic character can be efficiently encapsulated in SLNs [107].

In 2010, a formulation was developed in which the SLN nanoparticles were dispersed in a hydrogel
to carry miconazole nitrate (MN), an azole frequently used in cutaneous fungal infections [149].
The studies indicated that this MN-loaded SLN-bearing hydrogel formulation was less prone to cause
cutaneous irritation in comparison to the MN hydrogel and MN suspension formulation, showing
an even greater efficacy in animal models (male albino rabbits). Furthermore, SLN-bearing hydrogel
provided sustained release of miconazole (slow initial release with a lag time of 1 h and a sustained
drug release over a 24 h period) with greater drug deposition on the skin. This happens because gels
help disperse the matrix carriers evenly, increasing the contact time and the deposition of carriers on
the skin, resulting in a higher cutaneous penetration of the drug [16,149].

2.4.2. Polymeric Nanoparticles

Polymeric nanoparticles are produced either from natural or synthetic polymers, in which the
drug is dissolved, trapped, or bound to the nanoparticle matrix. Depending upon the composition of
the organic phase and the preparation method, nanocapsules (matrix-like structure) or nanospheres
(core-shell morphology) can be obtained [110,150].

These nanoparticles are capable of carrying proteins, DNA, and drugs, such as antifungals, for cells
and specific target organs, which increases the safety profile. Their nanometric size promotes an
effective permeation through the cellular membranes and increases their stability in blood flow.
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It is also important to point out the gelling systems that can be used to formulate polymeric carriers:
microsponges and nanosponges, amphiphilic gels and emulgels or gellified emulsions, which play an
important role in cutaneous drug delivery [143].

Microsponge and nanosponge systems are polymer-based spheres that can encapsulate or
suspend many substances and then be incorporated into a dosage form (hydrogel) or be used for oral
delivery [44,66,151].

A polymeric microsponge based gel system was successfully produced for the topical delivery of
fluconazole, with especially great entrapment efficiency, production yield, and extended drug release,
which allows a reduction in application frequency, a feature with great importance in recidivist and
prolonged fungal infections [66].

A nanosponge based gel formulation loaded with clotrimazole showed controlled release with
reduced side effects, indicating the safe and effective profile of these colloidal carriers for topical
use [46]. An econazole nanosponge hydrogel was developed and was found to solubilize poorly
soluble drugs and also had the ability of forming a local depot for sustained drug release [33].

Amphiphilic gels are semisolid systems of nonionic nature that can be used as topical/transdermal
carriers without promoting irritation of the skin. They aim at delivering the antifungal in a level within
the therapeutic window for as long as possible and to avoid fluctuations in plasma drug level [69].

An amphiphilogel of fluconazole was successfully formulated for topical application, presenting
overall stability and cumulative drug release within the range expected [69].

Emulgels have dual release control system (emulsion/microemulsion and gel), which increases
the overall stability of the antifungal formulations [143]. In comparison to conventional creams or
ointments, they exhibit better application properties, faster, and more complete drug release profile
and they lack greasiness and residues upon application [47].

Emulgels are suitable solutions to incorporate hydrophobic drugs in water soluble gel bases,
for instance the incorporation of clotrimazole in an emulgel formulation prepared using either Carbopol
934 or HMPC 2910 showed good physical properties, stability, and antifungal activity [47].

A formulation with amphotericin B encapsulated in poly(lactic-co-glycolic acid) PLGA in
association with ε-caprolactone was developed and proved the potential of polymeric nanoparticles
in preventing cytotoxicity, yet preserving the fungicidal efficacy. With this polymeric combination,
the authors described an amphotericin B encapsulation efficacy of 84% and a fungicidal effect for
Candida albicans equal to the free drug, with the advantage of presenting less toxicity and less mortality
associated [91].

A nanoformulation of the same drug in PLGA was also developed but, this time, it was
functionalized with dimercaptosuccinic acid (DMSA). This acid exhibits tropism to lungs,
being appropriate to be included in a formulation in which it is desired a release at this site.
In this study an intraperitoneal administration was also tested and verified that the therapeutic
effect on paracoccidioidomycosis (PCM) was equivalent to the free drug. The greatest advantage
of this formulation was that it only required to be taken every three days, given the slow release of
amphotericin B from the nanoparticles, and did not require a daily administration as the currently
commercialized formulation [152].

Chitosan is a very versatile polymer owing to the ease presented by their groups to be modified or
deacetylated [153]. Some studies have shown that this polymer also possesses antioxidant, antimicrobial,
and anti-inflammatory properties, becoming very attractive from a biopharmaceutical viewpoint [154].
Some other studies pointed out that chitosan nanoparticles themselves have a huge potential to become
safe and effective antifungal agents [155].

Chitosan nanoparticles containing amphotericin B were initially developed with the aim of
avoiding the drug gastrointestinal degradation, increasing the stability and the bioavailability in target
organs like the lung, the liver, and the spleen, whilst decreasing renal exposition. The researchers
determined that when administered by an oral route, these nanoparticles were effective in treating
visceral leishmaniosis, aspergillosis, and candidiasis, showing an efficacy comparable to the parenteral
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Ambisome® formulation. Moreover, this natural polysaccharide was also employed in the cutaneous
release of amphotericin B in wounds caused by infected burns with Candida albicans, promoting better
tissue healing and increased antifungal activity, when compared to the conventional formulation [156].

Polymeric micelles present a unique architecture where the hydrophobic core can incorporate
hydrophobic drugs, such as antifungals, which leads to a very significant improvement in their aqueous
solubility [134]. These systems have attracted attention in drug delivery because their critical micelle
concentration (CMC) is several 1000-fold lower (<10 mg/L) than classic micelles, this means that ionic
surfactants have greater ease in self-assembling in water to form micelles [157].

Amphotericin B has been incorporated in polymeric micelles to treat brain fungal infections.
The system was intended to improve drug solubility and permeability through biological membranes
as well as obviate issues like high toxicity and low efficacy against Candida meningoencephalitis [94].

Polymersomes are spherical structures composed of an aqueous core surrounded by a polymeric
bilayer membrane, being viewed as synthetic analogues to liposomes. They are very versatile
structures, which spontaneously self-assemble from amphiphilic diblock copolymers. This capacity
increases drug efficacy and enables them to encapsulate both hydrophilic and hydrophobic drugs,
including antifungals [158,159]. Furthermore, polymersomes present stimuli-responsive drug release,
which means that their physical and chemical properties are mutable in response to certain features
(pH, temperature, redox conditions, light, magnetic field, ionic strength, or even concentration).
This ability is promising in drug-controlled release, an important feature in antifungal drug
therapy [159,160]. In Figure 3 the process by which a polymersome is formed is represented as
well as its ability to carry different biological molecules.

Figure 3. Schematic representation of the formation of a polymersome and its versatile properties.
Polymersomes are generally self-assembled from block copolymers, presenting a unique structure that
is able to encapsulate different biological molecules.

A research group developed an amphotericin B loaded polymersome by solvent injection
method, using (PEG)3-PLA as co-polymer. This formulation was compared with two marketed
formulations (Fungizone® and Ambisome®) in terms of release, molecular organization of amphotericin
B, and hemolysis. The results were similar to the marketed formulations, which indicated the potential
for further in vivo development [92].

Dendrimers are homogenous polymeric tridimensional nanoarchitectures characterized by a
highly-branched and symmetrical structure consisting of a central core (a single atom or a group
of atoms), building blocks of repeating units emanating from the core (generations), and a high
density of water-soluble functional groups on the surface (terminal group) [161–163]. The elements
are added through sequential interactive chemical reactions to the central core, the spaces within
the voids facilitate the encapsulation of active substances within the dendritic structure, and the
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terminal functional groups dictate the efficacy of nucleic acid complexation or drug entrapment [164].
Their nano and uniform size structure (2–10 nm in diameter), high degree of branching, water solubility,
multivalence, well-defined molecular weight, and available internal cavities makes them extremely
valuable as drug delivery systems and as carrier systems for antifungal agents [161,165].

Albeit different types of dendrimers have been described, the most frequently used for antifungal
therapy are polyamidoamine (PAMAM) and polypropylene imine (PPI) dendrimers [163]. PAMAM
dendrimers containing ketoconazole were shown to improve the solubility and the in vitro release of
the drug and also to enhance the antifungal activity of ketoconazole [41].

2.4.3. Metallic Nanoparticles

Three main groups of metallic nanoparticles, gold, silver, and magnetic, can be used for the
vectorization of antifungal drugs.

Metallic nanoparticles can be synthetized in three different ways: chemically, physically,
and biologically. Chemical synthesis has been associated with many side effects related with the
absorption of toxic chemical particles on the surface of nanoparticles [10], thereupon the biological
synthesis is acquiring some expression [166].

Gold nanoparticles are used in immunochemical studies to identify protein interactions and in
DNA fingerprinting to detect DNA in a sample. They are also used to detect aminoglycosides like
streptomycin, gentamicin, and neomycin [10].

Silver nanoparticles are the most efficient on account of their antimicrobial efficacy against bacteria,
viruses, and other eukaryotic microorganisms. In fact, they are the most used materials, being applied
as antimicrobial agents in textile industry, for water treatment, in solar protectors, etc. [10].

Albeit nanostructures of iron, cobalt, and nickel exhibit superparamagnetic properties and
high magnetic susceptibility, superparamagnetic iron oxide nanoparticles such as magnetite (Fe3O4),
hematite (α-Fe2O3), and maghemite (γ-Fe2O3), are the most studied types of magnetic nanoparticles.
This type of nanoparticle has received special attention by virtue of their capacity to be influenced by
magnetic fields, therefore being easily directed and released in a specific site of the organism [10,167].

Superparamagnetic iron oxide nanoparticles present other unique properties, for instance:
low toxicity, biocompatibility, potent magnetic targeting capacity, and chemical inertia, thus, they have
many biomedical applications, for example in the cancer research field, steam cells, tissue repair,
drug release, genetic therapy, DNA analysis, and clinical diagnosis through magnetic resonance [10,167].

Nowadays, nanoparticles of superparamagnetic iron oxide are the ones that answer more efficiently
to an external magnetic field, being the ones with more potential to become drug carriers [5]. In order
to bypass cytotoxic effects, these Fe3O4 magnetic nanoparticles need to be coated, usually with DMSA
(meso-2,3-dimercaptosuccinic acid); this is a procedure that is important not only to increase cell
internalization and biocompatibility, but also to carry active molecules to the nanoparticle’s surface,
essential to drug delivery [168].

2.4.4. Other Drug Delivery Systems

Niosomes are non-phospholipid vesicles made of non-ionic surfactants that serve as drug depots
in the body as they release the drug in a sustained fashion through its bilayers. They are also able
to improve oral bioavailability of poorly soluble drugs, enhance the skin permeability of topical
drugs, protect the enclosed active substance from deleterious factors, and increase the stability of the
entrapped drug [169].

Nistatin was successfully encapsulated in niosomes and a safe and effective formula for parenteral
administration was obtained. This formulation provided reduced nephrotoxicity and hepatoxicity
in female Wistar rats and showed pronounced efficacy against Candida albicans with a higher level of
drug in vital organs [99]. The encapsulation of ciclopirox in niosomes increased the half-life, promoted
a prolonged drug release, and minimized the side effects [103]. Given the poor water solubility of
griseofulvin and its slow absorption from oral route, a niosome was produced in order to enhance
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bioavailability of this active substance, to accelerate its absorption and to obtain a sustained release,
acting as a depot inside the body [100].

Ketoconazole niosomal gel showed more prolonged action than conventional ketoconazole
formulations, hence it can be developed in order to improve the antifungal activity [38].

Spanlastics are termed as modified niosomes which present better permeability because they have
edge activators in their composition, like transfersomes and transethosomes [134,145].

These systems show great flexibility allowing them to pass through fenestrations smaller than
their own radius in order to enter the cell, simultaneously minimizing the possibility of damaging the
vesicles while squashing [138].

Firstly, there were ketoconazole-loaded spanlastics for ocular drug delivery [40] and then
spanlastics were loaded with terbinafine hydrochloride for treatment of onychomycosis [79].

Microemulsions are colloidal carriers that consist of a liquid dispersion of oil and water stabilized
by an interfacial film of surfactant. Due to this, they are able to incorporate drugs of different
lipophilicity [170]. They are promising colloidal carriers because of their transparency, ease of
preparation, and long-term stability [171].

When it comes to drug delivery through stratum corneum, microemulsions are very resourceful
considering the ability of the oils and surfactants included in their composition to act as skin
penetration enhancers [170,172]. Furthermore, they are also good candidates for oral delivery of poorly
water-soluble drugs as they can improve their solubilization.

Terbinafine hydrochloride is an example of a slightly water-soluble drug, which presented
higher solubility, an increase in the dissolution rate, and better efficacy when incorporated within a
microemulsion [170,171]. Likewise, a microemulsion system of voriconazole also showed a significant
increase in the antifungal activity against Candida albicans, along with better drug skin penetration [173].

Nanoemulsions are thermodynamically and kinetically more stable than emulsions, so they
have been evaluated as colloidal carriers to improve the efficacy and tolerability of some antifungal
drugs. The capacity of nanoemulsions to dissolve large quantities of drugs with low solubility,
their compatibility, their ability to protect drugs from enzymatic degradation and hydrolysis as well as
their capacity to penetrate the deeper skin layers, turns them into ideal drug delivery vectors [143,174].

A nystatin nanoemulsion for topical application was developed and was found to have a higher
antifungal effect than nystatin itself, representing a therapeutic improvement [97].

Silicon dioxide nanoparticles have been studied as drug carriers to enhance the antimicrobial
activity of some drugs, because of their biodegradability, low toxicity, capacity to stimulate macrophages,
and the ease by which they are synthetized and modified. The foremost advantage of these nanoparticles
is that they can be loaded with large amounts of drug [95,175].

There are four main types of silica nanoparticles, but their antifungal potential is yet to be studied
in some cases:

• Nitric oxide-silica nanoparticles with proven anti-biofilm activity [108];
• Metal modified silica nanoparticles, which can include silver or copper, metals that have a very well

documented antimicrobial effect, derived from the cell membrane and DNA damages, interaction
with enzymes from thiol groups or are associated with generating hydrogen peroxide [176];

• Surface-modified silica nanoparticles by quaternary ammonium compounds loaded with
antifungal agents [177,178];

• Bioglasses and bioceramics [179].

Amongst them, mesoporous silica nanoparticles are the ones who have become the most promising
candidates for many biomedical applications, specifically for antifungal therapy, because of their
uniformed mesoporous tunnels and narrow pore size distribution. Besides that, they present
outstanding biocompatibility and chemical stability and can be degraded and metabolized over
a relatively short term. These aspects allow high drug loading and reduce the probability of
particle-induced toxicity [95,180].
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In a study, one group of mice with candidiasis induced by Candida albicans was treated with
silica nanoparticles functionalized with amphotericin B and the other group was treated with officinal
amphotericin B. It was possible to observe that the first group showed a significant increase in survival
rates [95]. This confirms the fact that silica nanoparticles coated with quaternary ammonium surfactants
have higher fungicidal and fungistatic effect against Candida albicans than colloidal silver [177,178].

In order to increase the oral bioavailability of itraconazole, a poorly water-soluble antifungal drug,
mesoporous silica particles formulation was developed. It was concluded that ordered mesoporous
silica can, in fact, be considered a promising carrier seeing that it enhances the oral bioavailability of
extremely low water-soluble drugs [60].

It has been demonstrated that metals can easily accumulate in soil and then enter the food chain,
thus the combination of Ag+ ions with silica prevents the formation of these ions and reduces its
toxicity [176]. That is the reason why silica nanoparticles have also been studied for agricultural
purposes as safe and effective alternative fungicides, for example to manage tomato early blight [180].

3. Hidden Potential and Challenges of Natural Antifungal Compounds

From 1981 to 2014, 32 new chemical entities were placed on the market to treat fungal
infections: one from a biological source (interferon gamma-n1), that is a peptide produced by a
biotechnological procedure; three derived from a natural product that suffered a semisynthetic
modification (anidulafungin, caspofungin, micafungin); 25 totally synthetic discovered by random
screening or through the modification of an existing agent (fluconazole, itraconazole, ketoconazole,
amorolfine, ciclopirox; three synthetically synthesized with the molecule or the pharmacophore
mimicking a natural product (butenafine, liranaftate, terbinafine) [181].

In fact, almost 90% of the antifungal agents approved within this period were from a synthetic
origin. This paucity of natural products in modern treatments remains a reality and 1950s agents like
amphotericin and griseofulvin are still widely used [181].

One good example of an efficient employment of natural products to nanoparticle synthesis
happened with Mentha pulegium L., commonly known as pennyroyal, a flowering herb with antitussive,
carminative, and antiseptic effects. This herb was successfully used to synthesize stable colloidal silver
nanoparticles with promising antifungal effects against Candida albicans [182].

On the other hand, the marine environment represents a valuable and unexplored platform to
the discovery of new compounds [183]. In Table 4, there is an overview of the natural products that
have shown in vitro or in vivo potential as antifungal agents isolated from diverse marine organisms:
microorganisms (bacteria and fungi), invertebrates (sponges, corals and sea cucumbers), and marine
algae are presented.

Table 4. Overview of antifungal natural compounds produced by marine organisms [183,184].

Marine Organism Source Organism Type of
Compound Compound Name Spectrum of Activity

Bacteria (30% of total)

Bacillus licheniformis Glycolipid Ledoglucomide C,
Iedoglycolipid

Aspergillus niger, Rhizoctonia solani,
Botrytis cinerea, and Colletotrichum

acutatum, Candida albicans

Bacillus subtilis Lipopeptide Gageopeptides A-D R. solani, P. capsici, B. cinerea,
C. acutatum

Actinoalloteichus sp. NPS702 Macrolide Neomaclafungins A-I Trichophyton mentagrophytes

Streptomyces sp. Peptide Mohangamide A C. albicans

Bacillus marinus Macrolide Macrolactins T and B Pyricularia oryzae, A. solani

Tolypothrix Lipopeptide Hassallidin A A. fumigatus and C. albicans

Chondromyces pediculatus Peptide Pedein A Rhodotorula glutinis

Fungi (15% of total)

Stagonosporopsis
cucurbitacearum Alkaloid Didymellamide A C. neoformans, C. albicans,

C. glabrata

Aspergillus sclerotiorum Peptide Sclerotide B C. albicans

Penicillium bilaiae MA-267 Sesquiterpene Penicibilaenes A and B C. gloeosporioides
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Table 4. Cont.

Marine Organism Source Organism Type of
Compound Compound Name Spectrum of Activity

Sponge (35%)

Theonella swinhoei Peptide
Theonegramide,

Theonellamide G,
Cyclolithistide A

C. albicans

Halichondria cylindrata Peptide Halicylindramide D and E Mortierella ramanniana

Siliquariaspongia mirabilis,
Theonella swinhoei Peptide Theopapuamide A; B and C C. albicans

Jaspis johnstoni Peptide Jasplakinolide C. albicans, C. pseidrotropicalis,
C. parapsilosis

Monanchora arbuscular Alkaloid Batzelladine L A. flavus

Xestospongia muta Furan Mutafuran D Cryptococcus neoformans var.grubii

Corals (5%) Clavelina oblonga Alkanol (2S,3R)-2-aminododecan-3-ol C. albicans ATCC 10231, C. glabrata

Sea cucumbers (6%) Stichopus variegates Triterpene
glycoside Variegatuside D C. albicans, C. pseudo- tropicalis,

C. parapsilosis, and M. gypseum

Algae (9%) Caulerpa racemos Xylene Caulerprenylol B T. rubrum

Sponges have always interested pharmacologists, chemists, and biologists as a rich source of
antimicrobial compounds with peculiar activities. These colonial organisms have a sessile nature,
hence the necessity of producing compounds as a way of protecting themselves, communicating,
or modulating their cellular functions [184].

Peptides have high relevance as potential drugs, given their large spectrum of bioactivity. Sponges
that belong to the Theonella gender are a recognized source of uncommon peptides with antibacterial,
antifungal, and anti-HIV properties. The antifungal activity of some of these peptides is even surplus to
other commercial formulations, as seen through their diffusion zone in the agar diffusion method [184].

Although some formulations containing marine compounds are already being subjected to clinical
trials, none of them target fungal infections [183].

Theopapuamide A is a cyclic depsipeptide (a peptide in which one or more amides were replaced
by an ester group) being firstly isolated from the sponge Theonella swinhoei from Papua New Guinea [183].
Its isolation, structural elucidation, and stereochemical analysis are well described in literature [185].
It is capable of inhibiting the growth of Candida albicans wild strains and also strains resistant to
amphotericin B [186]. In addition, it presents anti-HIV activity, thanks to the 3,4-dimethyl-L-glutamine
residue in its chemical structure [183,184].

Besides the marine environment, a considerable number of studies have been conducted on
medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds,
essential oils, and extracts. Some plant extracts (Curcuma zedoaria, Psidium guajava, Plectranthus amboinicus,
Lippia alba) have shown activity against Candida spp. and others (Asteraceae, Euphorbiaceae, Rubiaceae,
and Solanaceae) against filamentous fungi. Despite the streamline nature of the discovery process,
the biological activity found during the screening of plant extracts, may not be experimentally
reproducible. This can be due to many reasons: the chemical constituents in the crude extracts may be
different, the solvent used to extract may destroy some compounds and chemical composition may
vary according to the growth stage or geographic origin. Some components of essential oils, mainly
terpenes or terpenoids, such as eugenol, camphor, curcumin, geraniol, and linalol show activity against
a wide variety of Candida species and others like clemateol or citral are active against Trichophyton spp.
or Malassezia spp. respectively. Propolis, which represents the resinous substances collected from plants
by bees, demonstrated activity against Candida spp., some dermatophytes, and onychomycosis. Ajoene,
a compound derived from garlic, has shown effectiveness in the treatment of paracoccidioidomycosis
and Fusarium spp. infections. Other compounds such as saponins, alkaloids, flavonoids, coumarins,
xanthones, lignans, and tannins also presented antifungal activity [187].

There is, in fact, a growing awareness of the limited structural diversity in existing compound
libraries and that there are many benefits in exploiting the huge chemical diversity and high biological
activity of natural compounds. Furthermore, it is possible to use these natural compounds as platforms
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to discover drug-like characteristics and produce new substances [188]. Therefore, natural compounds
with antifungal properties represent a valuable alternative to current antifungals and their incorporation
in nanocarriers is a significant step ahead in nanoformulation, besides being a more sustainable option,
because it employs marine resources [183].

Since the discovery of penicillin, the pharmaceutical industry has extensively relied on natural
products as sources of structural templates for drug discovery and development [188,189].

Regardless of this fact, the discovery and development of natural-derived medicines has been on
a steady decline over the last years, possibly due to high throughput screening. This tool has changed
the paradigm of drug discovery in the pharmaceutical industry since it allows the automatic screening
of thousands to millions of drug candidates within vast libraries. There is every likelihood that these
libraries contain a significant representation of all existing compounds, complicating the discovery of a
new natural chemical entity itself [190].

Although a valuable and precious resource, natural products brought about their fair share of
challenges in a wide variety of features, compromising their inclusion in the clinical pipeline.

The main issue lies in the fact that natural substances are not always abundant and they generally
require laborious extraction and purification steps through complex, expensive, and time-consuming
processes, often to obtain just few quantities of extract [190]. Moreover, there are no standard protocols
and research groups modify the existing procedures, making the studies not reproducible and not
comparable [187].

In addition, environmental aspects pose significant hurdles for drug discovery and development
because the substance may come from an endangered species and its overexploitation can lead to
habitat destruction [188].

The regulatory requirements for substances containing natural substances (medicines,
nutraceuticals, and cosmeceuticals) range from rather strict to non-existent and vary between regions,
being under the surveillance of different authorities [188].

4. Ongoing Clinical Trials on Myconanotechnology

Several pharmaceutical industries and authors have been performing clinical trials on antifungal
nanomedicines. Despite the growing improvement on applying nanotechnology for drug development,
just a few of those nanomedicines have been approved for their clinical applications. The major
issues with clinical trials are their time-consuming process and the difficulty while accessing and
researching information on previous nanomedicine trends. In the mycology field, amphotericin-B is
the active substance that represents the majority of the nanomedicines already available in the market:
Amphotec® (Three Rivers Pharmaceuticals, approved in 1992), Abelcet® (Sigma-Tau, approved in
1995) and Ambisome® (Gilead Sciences, approved in 1997), all lipid-based formulations [191,192].
An econazole liposomal formulation (Pevaryllipogel®) is also available on the market [193]. In Table 5
some examples of recent clinical trials are presented.

Table 5. Some examples of ongoing clinical trials on myconanotechnology [194].

Trade Name/Sponsor ClinicalTrials.gov
Identifier Antifungal Nanoformulation Clinical Phase Disease

Sara Botros,
Minia University NCT04110834 Itraconazole Nanoemulsion gel II Tinea versicolor

Sara Botros,
Minia University NCT04110860 Voriconazol Nanoemulsion gel II Tinea versicolor

Matinas BioPharma NCT02971007 Amphotericin B Cochleate lipid-crystal
nanoparticle II Vulvovaginal

candidiasis

Matinas BioPharma NCT02629419 Amphotericin B Cochleate lipid-crystal
nanoparticle II Mucocutaneous

candidiasis
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Table 5. Cont.

Trade Name/Sponsor ClinicalTrials.gov
Identifier Antifungal Nanoformulation Clinical Phase Disease

Ahmed Abdellatif,
Al-Azhar University NCT03752424 - Silver nanoparticle gel I Mycosis

Mona Badran,
Cairo University NCT03666195 - Titanium dioxide

nanoparticles Recruiting Candidiasis

Rasha Hamed,
Assiut University NCT04431804 - Silver nanoparticle Recruiting Invasive

aspergillosis

Celtic Pharma
Development Services NCT01145807 Terbinafine

(TDT067) Transfersome III Onychomycosis

5. Conclusions

The present pace of antifungal drug development is highly unlikely to keep up with the clinical
needs, especially with the uprising of resistance to current agents. Therefore, more therapeutic answers
to fungal illnesses are urgently needed.

The subject of sustainability and environmental impact has gained considerable relevance in
today’s societies and scientific research, motivating a heated debate on whether there should be an
active research for new natural compounds with biological activity or if the pillar of today’s research for
new compounds should be high throughput screening. The fact is that two out of the three major classes
of antifungal drugs (polyenes and echinocandins) were screened from natural products. The utilization
of natural compounds, such as chitosan is, irrefutably, a more sustainable option and brings both
environmental and pharmacokinetic advantages to nanotechnological approaches. Compounds from
a marine origin exhibit an undeniable potential, but their activity and toxicity mechanisms are yet to
be clarified.

Nanoparticles have been presented as promising solutions, mainly due to their ability to target
specific sites where fungi are harbored, their capacity to enhance the pharmacological effect of drugs,
optimizing their physiochemical characteristics, thereby allowing an administration through a more
comfortable route. All these features can enable lower dosing, more comfortable regimens, increased
bioavailability, and less serious adverse effects.

Special attention has been given to certain kinds of nanoparticles nowadays mainly because
of the outstanding features they exhibit: (a) magnetic nanoparticles and their capacity to directly
restrict fungal growth, (b) ultradeformable vesicles (transethosomes) and their ease on scaling up,
(c) mesoporous silica nanoparticles and their high drug loading, (d) polymersomes and their ability to
carry both hydrophobic and hydrophilic substances and to respond to external stimuli, (e) PAMAM
dendrimers and their versatile and biocompatible structure. We speculate that future antifungal
therapies will mostly lie in these five types of nanoparticles and will take advantage of the current
knowledge of using them for other purposes (for instance, as anticancer agents).

These new nanotechnological systems should be able to surpass the issues already mentioned
and should also mean a significant upgrade when comparing to the conventional treatments, fighting
antifungal resistance, presenting a broad spectrum of activity, with an emphasis on potency increase
and little host toxicity, thus having the potential to be industrially produced.

Interdisciplinary cooperation may be the key to a striving success of nanomedicine and
nanotechnology, not to mention a proper exploitation of natural medicinal products. Physicists,
health-care researchers, and clinical researchers have complementary knowledge that could be put
together (for example, innovative screening strategies and novel chemical libraries) so that more
effective, practical, and safe nanoparticles are designed. That would increase the chances of an industry
funding and, ultimately, a rethinking of current antifungal arsenal, while providing a better quality of
life for patients.

ClinicalTrials.gov
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